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M Moukara†, M Städele‡, J A Majewski†, P Vogl† and A Görling§
† Physik-Department und Walter Schottky Institut, Technische Universität München,
Am Coulombwall, D-85748 Garching, Germany
‡ Physics Department and Beckman Institute, University of Illinois at Urbana-Champaign,
Urbana, IL 61801, USA
§ Lehrstuhl für Theoretische Chemie, Technische Universität München, D-85748 Garching,
Germany

Received 14 March 2000, in final form 14 June 2000

Abstract. We present a rigorous approach for constructing norm-conserving pseudopotentials
within the exact-exchange (EXX) Kohn–Sham density functional formalism. The approach is
based on the relativistic EXX scheme within the framework of the optimized potential method.
We derive an integral equation that yields the exact local Kohn–Sham exchange potential due to
valence electrons. This valence exchange potential is used for constructing ionic pseudopotentials
and replaces the standard procedure of unscreening atomic pseudopotentials that is shown to
be not applicable in the EXX formalism. The EXX pseudopotentials excellently reproduce
the experimental atomic ionization energies and they show a better transferability than the
standard pseudopotentials based on the local density approximation (LDA). The relativistic EXX
pseudopotentials are shown to lead to the correct ordering of conduction band minima in diamond-
structure Ge and reduce the LDA errors in the energetic positions of d bands in solids.

1. Introduction

Density functional theory (DFT) has proven to be a powerful tool for quantum mechanical
calculations of the electronic properties of atoms, molecules, and solids [1–3]. The great
majority of applications are based on the Kohn–Sham (KS) approach to DFT [4]. The Kohn–
Sham equations are single-particle Schrödinger-like equations with an effective local potential
that consists of the external, the Hartree, the exchange, and the correlation potentials. In
conventional KS methods, the exchange and correlation potentials as well as the corresponding
energies have to be treated approximately, either within the local density approximation (LDA)
or the more sophisticated generalized gradient approximations (GGA) [3]. In a new generation
of Kohn–Sham methods, the exact expression for the exchange energy has been evaluated, and
the exact local KS exchange potential has been determined [6–15]. In this approach, termed
the exact-exchange (EXX) method hereafter, only the correlation energy and potential need
to be approximated. For free atoms and ions, an EXX approach was introduced already quite
some time ago and was termed the optimized-effective-potential (OEP) method [6]. It was
shown to be superior to the LDA in numerous applications [15–18] and to yield, in particular,
the correct asymptotic Kohn–Sham potential (∼1/r). EXX methods for solids [10, 11, 19]
and molecules [12,13] have only recently been developed and have yielded very encouraging
results. The EXX approach for solids has been demonstrated to cure a well known deficiency
of the LDA (and GGA), namely the strong underestimation of energy gaps. The major reason
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for this success lies in the exact elimination of the unphysical Coulomb self-interaction within
the EXX method. In addition, this scheme, combined with GGA correlations, has been shown
to yield much better cohesive energies than LDA [11].

The pseudopotential plane-wave method [20] is a well established and efficient technique
for solving the Kohn–Sham equations for solids. To attain the quality of all-electron calc-
ulations, the ionic pseudopotentials must be generated consistently, i.e., with the same type
of Kohn–Sham potentials that are used in the solid state [21–24]. It is known, for example,
that LDA-derived ionic pseudopotentials are poorly suited for Hartree–Fock calculations [25].
Therefore, consistent EXX pseudopotentials are needed for the employment of the plane-wave
EXX method for solids.

So far, with one exception [?], the REXX formalism [15,17,33] has only been developed
for all-electron calculations on atoms but not for pseudopotential calculations that require a
separate treatment of core and valence electrons. An approximate REXX pseudopotential
scheme has been reported previously [34, 35], that was based on the Krieger, Li, and Iafrate
(KLI) approximation [36] to the OEP.

In this paper, a rigorous method for constructing norm-conserving relativistic EXX
(REXX) pseudopotentials is developed. We present a symmetrization scheme for the
REXX equations for open-shell atoms that is particularly well adapted for the generation of
pseudopotentials. In addition, an implicit scheme for unscreening atomic pseudopotentials is
developed that is applicable to density functional schemes—such as EXX—where the explicit
dependence of the Kohn–Sham potential on the electron density is not known. In this context,
we show that the standard unscreening procedures used for LDA [26–29] or Hartree–Fock
pseudopotentials [30–32] are not applicable in the EXX case.

We have generated REXX pseudopotentials for several atoms containing occupied s,
p, and d shells. In all cases, these pseudopotentials show a better transferability than
LDA pseudopotentials. Finally, we demonstrate that REXX pseudopotentials yield, in
contrast to LDA, the correct ordering of energy gaps in crystalline Ge and good agreement
with experimental energies of d bands in II–VI compounds. We note that these REXX
pseudopotentials have been employed in EXX calculations of cohesive and electronic
properties of several semiconductors [10,11]. REXX pseudopotentials obtained with a closely
related approach were recently tested in EXX calculations of diatomic molecules [?].

The paper is organized as follows. In section 2, the main equations of the
relativistic exact-exchange (REXX) method for atoms are briefly summarized to set up the
notation. We introduce the generalized configuration-averaging procedure for open-shell
atoms in section 2.1, used to obtain spherically symmetric equations that are suitable for
pseudopotentials. In section 3 it is first pointed out that none of the known unscreening
procedures is adequate for generating REXX pseudopotentials. Then we show how one can
generate an ionic pseudopotential without knowing the explicit dependence of the exchange
and correlation functional on the valence electron density. In section 4, the REXX and RLDA
pseudopotentials are compared with one another, and, finally, the key results are summarized
in section 5. Generally, Rydberg units are used throughout the paper (h̄ = 2me = e2/2 = 1),
but we have explicitly included these constants in some cases for the sake of clarity. The
code for generating the present pseudopotentials, together with additional technical details, is
available on the Internet (www.wsi.tum.de).

2. Relativistic exact-exchange calculations for atoms

The present analysis is based upon the relativistic Kohn–Sham formalism in the framework
of the exact-exchange scheme (REXX) [15, 17, 33]. In the context of atoms, this scheme
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is conventionally referred to as the relativistic optimized-effective-potential (ROEP) method
[15, 17, 33] but we shall nevertheless consistently use the former term which is more widely
used for solids. In the absence of magnetic fields, the zeroth componentρ(�r)of the ground-state
four-current density determines the external potential vext (�r) (for atoms vext (r) = −Ze2/r;
Z is the atomic number) and the ground-state wave function uniquely. Consequently, only a
scalar effective potential vs acts on the four-component spinors φk(�r) in the relativistic Kohn–
Sham equations. For easier comparison with the non-relativistic (and pseudopotential) case,
we use the convention that energy εk = 0 refers to the energy of one free electron at rest, which
is mec

2 with respect to the vacuum (εk = ε′
k − mec

2). The resulting longitudinal relativistic
Kohn–Sham equations for the four-component spinors φk(�r) read [15, 17, 33]

(−ich̄ �̂α · �∇ + (β̂ − 1)mec
2 + vs(�r))φk(�r) = εkφk(�r) (1)

where �̂α and β̂ are the Dirac matrices [37], and the scalar effective Kohn–Sham potential
vs = vext + vH + vx + vc is a sum of the external, Hartree, exchange, and correlation potentials.
Each of these terms is a functional of the density ρ(�r) = ∑occ

k φ
†
k (�r)φk(�r). In the REXX

formalism, the local Kohn–Sham exchange potential vx(�r) is determined exactly whereas the
correlation potential is treated approximately. In the present work, we have employed the
LDA for the latter throughout [38]. The Kohn–Sham exchange potential is determined by the
following integral equation that must be solved simultaneously with equation (1) [17]:

∑
k

∫
d3r ′

(
φ

†
k (�r ′)vx(�r ′) − δEx

δφk(�r ′)

)
Gsk(�r ′, �r)φk(�r) + c.c. = 0 (2)

with

Gsk(�r ′, �r) =
∑
j �=k

φj (�r ′)φ†
j (�r)

εk − εj
(3)

where Gsk(�r, �r ′) is the Green function of the relativistic Kohn–Sham equation (1) projected
onto the subspace orthogonal to φk(�r). The exchange energy functional is given explicitly by
the relativistic Fock term in terms of the spinors φk(�r).

The resulting REXX equations are valid for arbitrary open-shell systems with non-
spherical electron density ρ(�r). In this form, however, they are not well adapted to
the construction of transferable pseudopotentials. ‘Good’ pseudopotentials describe the
interaction of extended valence states with a closed-shell ion core and should not depend
on the detailed valence electron configuration that they are embedded into. Therefore, it is
necessary to employ an appropriate symmetrization scheme that transforms the open-shell
atoms into species with spherical symmetry, characterized by a spherical electronic density
ρ(r) and a spherical Kohn–Sham potential vs(r). Once this spherical symmetrization has been
performed, the relativistic Kohn–Sham equation for the four-component spinors reduces to the
following equation for the two-component radial spinor �α(r) := (fα(r), gα(r))

	 that we
specify here for later reference:

(
−ciσ2

d

dr
+
cκ

r
σ1 +

c2

2
σ3 + vs(r) − c2

2
− εα

)
�α(r) = 0 (4)

where σk (k = 1, 2, 3) are 2×2 Pauli matrices [39], and κ = l for the total-angular-momentum
quantum number j = j− := l − 1/2, and κ = −(l + 1) for j = j+ := l + 1/2. Here, l is
the spatial angular momentum quantum number. The quantum numbers (nlj ) of a given shell
have been lumped together into a single Greek index α.
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2.1. Spherical symmetrization for open-shell atoms

In this section, we show how to convert the relativistic Kohn–Sham equations for open-shell
atoms with the exact exchange potential into rotationally invariant equations of the form of
equation (4). In the LDA, the symmetrization of the one-electron density and the Kohn–Sham
potential in open-shell atoms is achieved simply by occupying all open shells with fractional
electron numbers. Since, by contrast, we treat the exchange interaction exactly, we must
explicitly calculate the energy and density for different electron configurations and perform the
averaging procedure over angular degrees of freedom subsequently. In this paper, we show that
a ‘generalized configuration-averaging principle’ [40], that has previously been developed for
hyper-Hartree–Fock–Dirac calculations, can be adapted effectively for the REXX formalism.

We consider an atom with a certain number of closed shells and one open (nl)-shell. The
latter consists of two j -subshells j− and j+ containing 2l and 2l + 2 orbitals, respectively. In
the standard Slater averaging scheme [41,42], one averages only over electron configurations
within each j -subshell. By contrast, we average over all possible electronic configurations
within the open (nl)-shell. This generalized configuration average has the advantage of
yielding observables that no longer depend on atomic subshell indices. For an observable
O, its generalized average is denoted by O and is evaluated in two steps. Let us consider
the different possible distributions of the N electrons in the atom over the available subshells
α = (nlj). Each distribution defines a sub-configuration M and may be characterized by the
occupation numbers nMα for all subshells, including the closed shells. Let SM be the statistical
weight of this distribution and NM the number of occupied subshells. In the first step, we
compute the standard intra-subshell Slater average [41, 42] OM of the observable O for each
sub-configuration M . Then, in the second step, the average over all sub-configurations M

yields the generalized average, O = ∑
M SMOM . The first step yields the spherical electron

density ρM and the exchange energy EM
x for each configuration M in the forms

ρM(r) = 1

4πr2

NM∑
α=1

nMα �	
α (r)�α(r) (5)

EM
x = −1

2

NM∑
α=1

∫ ∞

0
dr �	

α (r)X
M
α (r) (6)

with

XM
α (r) = 1

2

NM∑
β=1

∑
L

CαβL�β(r)

∫ ∞

0
dr ′ �	

β (r
′) vL(r, r

′)�α(r
′) (7)

where vL(r, r
′) = e2 min(r, r ′)L/max(r, r ′)L+1 results from the expansion of the Coulomb

potential e2/|�r − �r ′| into spherical harmonics. The coefficients CαβL may be derived from
references [41, 42]. The index L in equation (7) ranges through all integers which simult-
aneously obey the following conditions: (i) L + lα + lβ is even, (ii) |lα − lβ | � L � lα + lβ ,
and (iii) |jα − jβ | � L � jα + jβ for the two subshells α and β. The total energy of the
sub-configuration M is given by

EM
tot =

NM∑
α=1

nMα εα − 4π
∫ ∞

0
dr r2ρM(r)vs(r) + 4π

∫ ∞

0
dr r2ρM(r)Vext (r)

+
4π

2

∫ ∞

0
dr r2ρM(r)VH (r) + EM

x + Ec[ρM ]. (8)

Note that the one-particle energies εα and spinors �α do not depend on the sub-configuration
M in these equations, since they fulfil equation (4) with the spherical effective potential vs(r)



Pseudopotentials in the EXX formalism 6787

that is determined by the generalized average of the density ρ(r) = ∑
M SMρM(r):

vs([ρ]; r) = vext (r) + vH ([ρ]; r) + vx([ρ]; r) + vc([ρ]; r). (9)

In order to generate the exchange potential vx[ρ] exactly, we insert the generalized con-
figuration average of the exchange energy Ex together with the radial spinors into the integral
equation (2). This leads to the following inhomogeneous linear Fredholm integral equation of
the first kind for the radial exact exchange potential vx(r):∫ ∞

0
dr ′ K(r, r ′)vx(r ′) = F(r) (10)

with the kernel K(r, r ′):

K(r, r ′) =
∑
M

SMKM(r, r ′) =
∑
M

SM

NM∑
α=1

nMα �	
α (r) Gα(r, r

′)�α(r
′) (11)

and the inhomogeneity F(r):

F(r) =
∑
M

SM

NM∑
α=1

∫ ∞

0
dr ′ (XM

α )	(r ′) Gα(r
′, r)�α(r) + .F(r) (12)

with

.F(r) =
∑
M

SM

∫ ∞

0
dr ′ KM(r, r ′)

[
vH ([ρM ]; r ′) + vc([ρM ]; r ′) − vH ([ρ]; r ′) − vc([ρ]; r ′)

]

(13)

where Gα(r, r
′) are 2 × 2 matrices that obey the equations(

−ciσ2
d

dr
+
cκ

r
σ1 +

c2

2
σ3 + vs(r) − c2

2
− εα

)
Gα(r, r

′) = −δ(r − r ′) + �α(r)�
	
α (r

′).

(14)

Practical hints concerning the calculation of Gα(r, r
′) may be found in reference [15]. Note

that the correction term .F(r) in equation (13) vanishes if the standard ROEP method for
atoms is invoked [15] where only a single sub-configuration (with weight equal to 1) is used
in calculating the spherical average.

The present generalized configuration-averaging procedure eliminates the explicit
dependence of the Kohn–Sham potential on atomic subshells which is a prerequisite for
constructing transferable pseudopotentials for solid-state applications as mentioned before.
The independence of the Kohn–Sham potential of j also greatly facilitates taking the non-
relativistic limit of the Dirac–KS equation (4). Note, however, that the wave functions and
eigenvalues in equations (4) and (14) still depend on j via the factor κ; only the Kohn–Sham
potential itself no longer depends on j .

Finally, we need to show that the present averaging procedure preserves the correct
asymptotic behaviour of the exact exchange potential vx . Following arguments analogous
to those for the non-relativistic case [18, 43], it is easy to show that, for r → ∞,

vx(r) → − Xτ(r)

nτfτ (r)
→ −e2

r
(15)

where fτ denotes the large component of the one-electron orbital τ with the highest energy
eigenvalue among the occupied orbitals (e.g., the 4p3/2 orbital in Ge). The quantity Xτ is the
generalized average of XM

τ of equation (7) and nτ denotes the generalized average occupation
number of this orbital. Therefore, the relativistic exact exchange Kohn–Sham (REXX-KS)
potential has the correct asymptotic behaviour, in contrast to the relativistic local density
approximation (RLDA) KS potential. The latter tends to zero exponentially.
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3. Relativistic exact exchange pseudopotentials

The atomic REXX equations in the previous section form the starting point for generating
norm-conserving pseudopotentials. Since the Kohn–Sham potential correctly tends to −e2/r

asymptotically in the REXX method, one eliminates the following ambiguity that plagues
the LDA. The construction of pseudopotentials often requires one to include states that are
unoccupied in the free atom (such as the 4d states in Ga, Ge, or As, for example). In LDA
or GGA, the unoccupied states are unbound in most cases and must be converted to bound
states either by using ions as reference systems [26] or by normalizing the unbound states
to some suitably chosen radius (Hamann’s procedure [28]). Both approaches clearly limit
the transferability of the pseudopotentials generated. By contrast, the REXX-KS potential vs
supports bound unoccupied states. This is illustrated for the Kr atom in figure 1. This important
property of vs allows one to treat the occupied and unoccupied states on an equal footing.

REXX

RLDA

-e2

r

r [a.u.]

E
n

er
g

y 
[R

y]

0 5 10 15

Kr

- I (exp)  = -1.029 Ry

-1.0

-0.5

-1.5

0.0

5s

4p1/2

3/24p

4p1/2

3/24p

5d5/2 3/25d

5p3/2 1/25p
4d5/2 3/24d

Figure 1. The effective Kohn–Sham potential in rydbergs of the neutral krypton atom in the
relativistic LDA (RLDA, dotted line) and relativistic exact-exchange (REXX, continuous line)
methods, as functions of the distance in atomic units. For comparison, the thin line shows the
Coulomb potential. The energies of the highest occupied (4p3/2, 4p1/2) valence states and several
unoccupied states are also depicted. In RLDA, only the 4p states are shown since all unoccupied
states are unbound. The arrow indicates the experimental value of the ionization energy I .

In the first step of calculating pseudopotentials, neutral atomic pseudopotentials are
generated in close analogy to the standard method of Troullier and Martins [27]. The atomic
all-electron calculations are performed in the generalized configuration average corresponding
to the ground state of the neutral atom. This yields the one-electron energies εnlj and radial
spinors (fnlj , gnlj )

	. In the next step, we construct the pseudo-wave functions ϕlj for the
valence electrons. Beyond the cut-off radius rlc we set them equal to the large component
of the corresponding all-electron wave function, ϕps

lj (r) = flj (r) and nodeless for shorter
distances, following reference [27]. In addition, we require the norm of ϕps

lj , integrated up to
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rlc, to be equal to the norm of the corresponding two-component radial spinor. The neglect
of the small component outside the core leads to a negligible error of the order of α2 [44],
where α ≈ 1/137 is the fine-structure constant. Note that the index n has been dropped here,
since the orbital quantum numbers (lj ) uniquely determine the pseudo-valence states. The
pseudo-wave functions ϕps

lj obey the pseudopotential Schrödinger equation with eigenvalues
equal to the l- and j -dependent all-electron energies of the valence electrons:(

− d2

dr2
+
l(l + 1)

r2
+ V

ps

lj (r) − εlj

)
φ
ps

lj (r) = 0. (16)

In the next step, the screened pseudopotential with components V ps

lj (r) is obtained by inverting
this equation [27]. Note that it is this inversion that causes the pseudopotential to be lj -
dependent despite the fact that the all-electron Kohn–Sham potential is lj -independent. The
remaining task is to determine the ionic pseudopotential V ion, i.e. the potential of a single
valence electron in the field of the atomic core. It needs to be extracted from V

ps

lj through
elimination of the electron–electron interaction between the pseudo-electrons. This so-called
unscreening procedure turns out to be the major non-trivial step in the REXX scheme and is
discussed in the next section.

3.1. The unscreening procedure for the exact exchange pseudopotentials

In the neutral pseudo-atom, the pseudo-electrons move in an effective potential that may be
written as a sum of the ionic pseudopotential V ion and a screening potential V ps

screen:

V
ps

lj (r) = V ion
lj (r) + V ps

screen([ρ
ps]; r) (17)

V ps
screen([ρ

ps]; r) = v
ps

H ([ρps]; r) + vpsx ([ρps]; r) + vpsc ([ρps]; r). (18)

The potential V ps
screen is a functional of the pseudo-electron density ρps and contains the

same density functionals as the ones entering the all-electron calculation. In the LDA (or GGA)
scheme, the Hartree potential vH , the correlation potential vc, as well as the exchange potential
vx are known explicit functions of the pseudo-electron density. In such a case, the unscreening
of the atomic pseudopotentials can be performed straightforwardly by subtracting V

ps
screen from

V
ps

lj [26, 27]. Similarly, the ionic pseudopotentials in the Hartree–Fock method [30–32] can
be obtained simply by subtracting from V ps the Coulomb and non-local exchange contrib-
ution due to the valence electrons. This contribution is an explicit known functional of the
pseudo-orbitals and has the same form as its all-electron counterpart because the Hartree–Fock
Coulomb and exchange potential consists of additive contributions of all occupied orbitals.
Similar arguments apply to other pseudopotential methods where the explicit dependence of
the screening potential on the orbitals is known, such as the self-interaction-corrected LDA
(SIC-LDA) [38]. In the REXX formalism, on the other hand, these standard methods of
unscreening are not applicable, since neither the explicit dependence of vx on the density nor
that on the orbitals is known. We have therefore developed an alternative method to construct
V ion
lj that does not require the explicit knowledge of vpsx as a function of ρ or the orbitals.

We start by determining v
ps

H and v
ps
c . To this end we compute the generalized averaged

pseudo-electron density ρps analogously to the all-electron density by a generalized con-
figuration averaging, which reads

ρps(r) =
∑
M

SMρps
m (r) =

∑
M

SM
∑

nMlj (ϕ
ps

lj (r))2 (19)

where nMlj are the occupation numbers of the orbitals lj in different sub-configurations M

as defined in section 2. This procedure guarantees that ρps(r) = ρ(r) for r > rc, where
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rc = maxl(r
l
c). Since the Hartree and LDA or GGA correlation pseudopotentials in the

screening potential are known functionals of the density, they can be calculated directly—in
contrast to v

ps
x . In order to determine the latter within the REXX scheme, we again follow

the procedure of calculating vx for an atom (section 2) but now apply it to a pseudo-atom. In
particular, the integral equation for vpsx reads∫ ∞

0
dr ′ Kps(r, r ′)vpsx (r ′) = Fps(r) (20)

where the kernel Kps(r, r ′) and the inhomogeneity Fps(r) are defined analogously to their all-
electron counterparts. To be precise, the pseudo-wave functions ϕps

lj are assumed to correspond
to the major components of the radial spinors, and we obtain Kps(r, r ′) and Fps(r) from
equations (11) and (12) by neglecting the minor components. In accord with the other steps
in constructing valence pseudopotentials, this introduces errors of the order of (1/137)2. The
pseudo-Green function in the kernel Kps(r, r ′) obeys a Schrödinger-type equation of the form
given in equation (14) with vs and �α replaced by V

ps

lj and ϕ
ps

lj , respectively.
Thus, this unscreening procedure does not require the solution of an entirely different set of

equations but can be carried out with basically the same equations as are used in the all-electron
problem. This method can therefore be implemented easily. An alternative way to solve or,
rather, to avoid the unscreening procedure altogether is to generate the pseudopotential from
all-electron calculations for positive ions with only a single valence electron. This approach
has been used with some success in the Hartree–Fock scheme before [23,45] but not in LDA,
where these pseudopotentials are known to reproduce neutral atoms and atoms in solids rather
poorly [23]. We have nevertheless tested this procedure within the REXX scheme for Si, Ga,
and Ge and obtained a fairly accurate pseudopotential for Si, but not for the heavier atoms Ga
and Ge.

We note that this unscreening procedure can easily be generalized to construct consistent
pseudopotentials for the case of orbital-dependent exchange–correlation functionals, such as
the meta-GGA functionals [46]. These functionals are currently considered to be a particularly
promising development in the DFT.

Since solid-state calculations are often performed scalar relativistically, it is useful to
define the spin-averaged pseudopotential [26]:

V
ion

l (r) = l + 1

2l + 1
V ion
l,l+1/2(r) +

l

2l + 1
V ion
l,l−1/2(r). (21)

Whenever we refer to results involving this potential, we will refer to the EXX (rather than
REXX) method.

3.2. Intermediate-range tails of exact exchange pseudopotentials

Both the relativistic REXX and the scalar relativistic ionic EXX pseudopotential V
ion

l (r)

asymptotically approach the correct limit −Zve
2/r , with Zv being the number of valence

electrons. However, they deviate from the asymptotic limit at intermediate distances r > rc,
as can be seen in figure 2. While the magnitude of this deviation is small, such a tail nevertheless
limits the transferability of a pseudopotential and is undesirable in solid-state calculations.

The deviation from −Zve
2/r for intermediate distances r > rc in the ionic EXX

pseudopotential originates in the difference between the all-electron potential Vscreen and the
pseudo-electron screening potential V ps

screen outside the core region (cf. equations (17) and
(18)) [31]. In the Hartree–Fock method, both the all-electron and the pseudo-electron screening
potentials are non-local. This non-locality transports the gross differences between the all-
electron wave functions and pseudo-wave functions within the core region to the area outside
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the core, even though the real and pseudo-wave functions themselves are equal for r > rc.
This effect leads to large long-range tails in Hartree–Fock pseudopotentials [31, 32, 47].

r [a.u.]
1.9 3.9 5.9 7.9

EXX-PP

LDA-PP

Io
n

2
l

v
r(

V
(r

) 
+

 Z
e

/r
) 

[a
.u

.]

-0.030

-0.025

-0.020

-0.015

-0.010

-0.005

0.000

0.005

Ge

Figure 2. Deviations of the EXX and LDA pseudopotentials for Ge from their asymptotic limit
outside the cut-off radius rc = 1.9 (in atomic units). The potentials have been multiplied by the
distance r and all quantities are given in atomic units. The results are shown without the tail cut-off.

In the LDA, on the other hand, the locality of both Vscreen and V
ps
screen guarantees

that the ionic pseudopotential V
ion

l reaches −Zve
2/r very quickly outside the core radius.

Nevertheless, a small deviation from −Zve
2/r for r > rc occurs even in the LDA as can be

deduced from figure 2. This is due to the neglect of the minor component of the all-electron
wave function for r > rc in the pseudopotential construction [27].

In the EXX method, the exact exchange potential is local, but the integral equations
that determine this exchange potential for the atom (equation (10)) and for the pseudo-atom
(equation (20)) are of non-local character. In particular, the non-local kernels K in equations
(10) and (20) differ inside the core. Therefore, the intermediate-range pseudopotential tails are
larger in the EXX method than in the LDA scheme but significantly smaller than in the Hartree–
Fock one. We note that similar effects have been previously discussed for pseudopotentials
that are based on the KLI approximation of the OEP method [34, 35]. In fact, we followed
the procedure of reference [34] and smoothly cut off the tails beyond a certain ionic radius
r0 that is set to approximately half the bond length (r0 � 2.0 aB) of a typical semiconductor.
Fortunately, the cohesive and electronic properties of semiconductors are insensitive to the
choice of r0 [11].

Finally, we would like to make two remarks. First, the present relativistic and non-
relativistic EXX pseudopotentials can easily be cast into the separable Kleinman–Bylander
form by following the standard procedures [48, 49]. Secondly, the Kohn–Sham formalism
is strictly valid only for local external potentials. In principle, pseudopotentials violate this
condition since they contain an orbital-dependent projection operator—be it the LDA, GGA,
or EXX. Nevertheless, the generation of pseudopotentials can be rigorously justified within
the framework of the generalized Kohn–Sham scheme [50].
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4. Results and properties of REXX pseudopotentials

With the procedure described in section 3, we have generated REXX pseudopotentials for
several atoms. Here, we present results for some typical examples, and compare them with
standard LDA pseudopotentials. We also discuss results for band structures in semiconductors.

First, we compare REXX and RLDA results for atomic all-electron properties. Table 1
summarizes results of RLDA and REXX calculations for the highest occupied Kohn–Sham
orbital energies, the first and fourfold ionization energies of C, Si, and Ge atoms, and compares
these results with experiment. Most strikingly, the moduli of the highest occupied orbital
energy and the ionization energy agree with one another almost perfectly in the REXX method,
in accord with the exact Kohn–Sham theory [51]. By contrast, these quantities differ by almost
a factor of two in the RLDA, as is well known. In addition, the REXX ionization energies are
in much better agreement with experiment. We have also included pseudopotential results in
table 1 in order to show that the all-electron properties are faithfully reproduced by the present
pseudopotential method.

Table 1. Atomic and pseudopotential ionization energies for C, Si, and Ge calculated within the
REXX and RLDA methods and compared to experiment. The LDA correlation energy functional
has been used in both cases. εI is the one-particle energy of the highest occupied orbital, whereasEI

and EIV denote the first and the fourfold ionization energies, respectively. The RLDA and REXX
pseudopotentials have been generated with cut-off radii rc (for all angular momentum components)
equal to 1.5, 2.2, and 1.9 aB, for C, Si, and Ge, respectively. All energies are in rydbergs and the
experimental values are from reference [61].

RLDA REXX

Element Energy Atom Pseudo-atom Atom Pseudo-atom Experiment

C −εI 0.3982 0.3982 0.9061 0.90350 0.8281
EI 0.8077 0.7956 0.8293 0.8173 0.8281
EIV 10.7747 10.6950 10.9991 10.9982 10.8793

Si −εI 0.3057 0.3057 0.6364 0.6381 0.5991
EI 0.5755 0.5697 0.6016 0.6015 0.5991
EIV 7.5821 7.5062 7.6613 7.6421 7.5780

Ge −εI 0.2933 0.2909 0.6103 0.6035 0.5796
EI 0.5615 0.5557 0.5836 0.5847 0.5796
EIV 7.7277 7.5966 7.6109 7.6268 7.6259

The basic assumption underlying the pseudopotential concept is the frozen-core
approximation [52]. In order to investigate its validity, we have calculated the Kohn–Sham
energies for core electrons of atoms in two different valence configurations. Figure 3 depicts
the differences in the core energies of atomic Si and Ge, when the valence electrons are in
the s2p2 or sp3 configuration. These core energy differences are seen to be systematically
smallest in the REXX scheme and largest in the Dirac–Hartree–Fock [53] (DHF) method.
Thus, the REXX one-particle energies depend somewhat more weakly on the atomic valence
state configuration than the RLDA or Hartree–Fock energies.

The angular momentum components of the scalar relativistic EXX pseudopotential and the
corresponding components of the spin–orbit pseudopotential [26] for Ge are depicted in figure 4
and compared to the LDA results. The same cut-off radius rc = 1.9 aB has been used in both
methods and for all angular momentum components. We note that the 4d state that produces
the d component of the pseudopotential is bound in the EXX method, in contrast to the situation
in the LDA. The more tightly bound core charge in the EXX method screens the nucleus more
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Figure 3. Differences between the core orbital energies in eV, computed in the sp3 and the s2p2

configuration of the valence electrons. The calculations are performed for (a) Si and (b) Ge, within
the Dirac–Hartree–Fock (DHF), the relativistic LDA (RLDA), and the present relativistic exact-
exchange (REXX) method. The results for the nlj+ and nlj− orbital states are identical to within
0.01 eV so only the latter are shown.

effectively and results in a less attractive effective potential for the valence electrons, compared
to the LDA. Similar results have been found in the self-interaction-corrected LDA [54].

The difference between the radial logarithmic derivatives of the all-electron wave functions
and pseudo-wave functions is another widely used measure for the transferability of a
pseudopotential. Figure 5 depicts these differences for several atoms, as calculated within
the REXX and RLDA, respectively. Once more, these deviations are seen to be systematically
smaller in the REXX, indicating superior transferability. We have checked that this trend
depends very weakly on the chosen cut-off radius as well as on the specific position at which
the derivatives are computed.

In the pseudopotential calculations that have been performed for figure 5, the semicore 3d
states are treated as part of the frozen core. An important difference between the REXX and
RLDA calculations is the so-called non-linear core correction (NCC) [55]. We have applied
the NCC in the latter case to account for the non-linearity of the LDA exchange and correlation
potentials in the core and valence densities. The inclusion of this non-linearity is known to
be essential for obtaining transferable LDA pseudopotentials [11, 56]. In the Hartree–Fock
method, on the other hand, the density matrix enters the non-local exchange potential linearly
which implies the NCC to be strictly zero. While this does not hold for the REXX method, we
believe for the following reasons that non-linear core corrections are small in the latter case
nevertheless. First of all, we have already seen the REXX pseudopotentials to show better
transferability than the LDA pseudopotentials. Secondly, the cohesive properties obtained
with the REXX pseudopotentials [11] resemble closely those obtained with the Hartree–Fock
pseudopotentials [57]. We have therefore neglected the NCC except in the correlation potential
where its effect is marginal.

We now turn to applications of the EXX pseudopotentials to solid-state calculations
and show that the exact elimination of the unphysical self-interaction significantly improves
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electronic spectra for solids as compared to the LDA.
It has been established that the failure of the LDA to predict an indirect band gap of bulk

diamond-structure Ge is related to the relative overbinding of the 4s states with respect to the
4p states in atomic Ge [58,59]. The low energy of the 4s states favours a direct band gap at the
centre of the Brillouin zone as is consistently found in LDA calculations (see figure 6) [54,59].
In the EXX method, on the other hand, we find the orbital energy difference E(4s) − E(4p)
in atomic Ge to be 150 meV smaller than in the LDA, which amounts to a corresponding
rise of the more localized 4s state. When we now perform a EXX pseudopotential plane-wave
calculation for bulk Ge, following the method of reference [11], we obtain the correct energetic
ordering of the lowest energy gaps in bulk Ge, independently of whether we use the LDA or
EXX functional for the valence exchange potential in the solid (see figure 6). A similar result
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has recently been found on the basis of self-interaction-corrected LDA pseudopotentials [54].
These findings confirm that band gaps depend crucially on an accurate modelling of the atomic
core potentials [58].

As a further stringent test, we have computed EXX pseudopotentials for a series of
elements with filled d shells which have been treated as valence states. On the basis of
these EXX pseudopotentials, we have calculated the electronic structure of zinc-blende ZnO,
ZnS, ZnSe, and CdSe employing the plane-wave method and treating the valence electrons
in the solid within the LDA [60]. If the LDA is used both for the construction of the ionic
pseudopotentials as well as for the valence electrons in the solid, the discrepancy between
the theoretical and experimental centre of gravity of the d bands is 2.4, 2.6, 2.6, 2.6 eV for
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ZnO, ZnS, ZnSe, and CdSe, respectively. If, by contrast, the EXX ionic pseudopotentials are
combined with an LDA treatment of the valence electrons, the discrepancy between theory and
experiment diminishes by approximately 70%. Specifically, the remaining difference between
the predicted and measured average position of the d bands amounts to 0.6, 1.6, 0.7, 0.8 eV
for the same sequence of materials. These results are consistent with analogous trends in the
atomic eigenvalues. In neutral atomic Zn, for example, the REXX and RLDA calculations
yield energies of −15.47 eV and −10.30 eV, respectively, for the 3d5/2 orbital.

We expect further improvements if the EXX method is used consistently for all electrons,
in accord with what we have found previously for other semiconductors [11].

5. Conclusions

We have presented a method for constructing norm-conserving pseudopotentials within the
relativistic exact-exchange Kohn–Sham scheme. A generalized averaging has been employed
for open-shell atoms. Most importantly, we have developed a rigorous ‘unscreening’ method
for calculating ionic pseudopotentials that does not require the knowledge of the explicit
dependence of the exchange or correlation functional on the valence electron density. In
contrast to LDA, the EXX Kohn–Sham potential possesses the correct asymptotic limit and
consequently yields bound unoccupied orbitals in atoms. Thus, all angular momentum
components of the EXX pseudopotential, irrespective of their occupancy in the neutral atom,
can be treated on an equal footing. We have been able to demonstrate that the ionic REXX
pseudopotentials are only weakly dependent on the valence configuration and therefore show a
better transferability than their LDA counterparts. Since the EXX method eliminates the self-
repulsion between electrons, it corrects some typical LDA errors. We have found systematic
improvements for bulk Ge and some II–VI semiconductors with filled d bands by employing
EXX pseudopotentials, even if the valence electrons are still modelled by the LDA method.
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